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Abstract. In this paper, we propose an ultradiscrete Burgers equation of which all the variables
are discrete. The equation is derived from a discrete Burgers equation under an ultradiscrete
limit and reduces to an ultradiscrete diffusion equation through the Cole–Hopf transformation.
Moreover, it becomes a cellular automaton (CA) under appropriate conditions and is identical
to rule-184 CA in a specific case. We show shock wave solutions and asymptotic behaviours of
the CA exactly via the diffusion equation. Finally, we propose a particle model expressed by
the CA and discuss a mean flux of particles.

1. Introduction

There are various degrees of discreteness of mathematical models used to describe physical
phenomena, for example, the differential equation, difference equation, coupled map lattice
and cellular automaton (CA) exist from the fully continuous model to the fully discrete
one. Among them, the CA is the most discrete model of which variables are all discrete
[1]. In particular, its dependent variable takes on a finite set of discrete values. Many CA
have been proposed and used as simulators of phenomenon and analysed mathematically to
grasp the behaviour of solutions. However, in the analysis, there often exists a difficulty
peculiar to CA. For example, when we discuss linear stability or the asymptotic behaviour
of difference equations, we often take a continuous limit of the equations. In the case of the
CA, it is difficult to introduce such an approach owing to the discreteness of the dependent
variable.

As a solution to the above problem, Tokihiroet al proposed a non-analytical limit named
the ‘ultradiscrete limit’;

lim
ε→+0

ε log(eA/ε + eB/ε + · · ·) = max(A,B, . . .) (1)

where max(A,B, . . .) returns the maximum element in{A,B, . . .} [2]. They showed that
the discrete Lotka–Volterra equation can reduce to the box and ball system under this limit.
The former is a difference soliton equation with a continuous dependent variable [3]. The
latter is a soliton CA defined by using boxes and balls [4]. Both haveN -soliton solutions
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and those of the box and ball system are obtained exactly from those of the discrete Lotka–
Volterra equation again by using the limit.

The ultradiscrete limit is not specific to soliton systems. Since equation (1) does not
require integrability, it can be applied widely. Indeed, examples exist where the ultradiscrete
limit is applied to a chaotic equation and to an elliptic function [5, 6].

In this paper, we apply the above ultradiscrete limit to a discrete analogue of the Burgers
equation. Then, we obtain from the equation rule-184 CA of which rules are numbered
following Wolfram [1]. The rule-184 CA (and its equivalence) is the only nonlinear CA
preserving the number of 1’s among the CA in the form

Ut+1
j = f (Ut

j−1, U
t
j , U

t
j+1) (2)

wherej is the site number,t is time,U is 0 or 1 andf is a Boolean function. Moreover,
solutions to the rule-184 CA become steady at large enought from any initial condition
[7–9]. Owing to these remarkable properties, the CA is often used as a base of the traffic
flow model [10, 11].

This paper is organized as follows. In section 2, using an ultradiscrete limit, we show
that the discrete Burgers equation reduces to the ultradiscrete Burgers equation which can
be a CA under a specific condition. We call this Burgers CA (BCA). The discrete Burgers
equation reduces to a linear discrete diffusion equation and the BCA also reduces to an
ultradiscrete diffusion equation. In section 3, we show that the BCA with a specific
parameter becomes rule-184 CA. Moreover, we derive shock wave solutions to the BCA
obtained from an ultradiscrete limit of discrete solutions. In section 4, we show an
asymptotic behaviour of solutions to the BCA using an ultradiscrete diffusion equation.
A solution from any initial state becomes steady at large enough time. In section 5, we
propose a particle model expressed by the BCA. The mean flux of particles becomes constant
at large enough time and the constant value only depends on the density of particles. In
section 6, we give concluding remarks and future problems. Throughout the results, we use
the properties of an ultradiscrete diffusion equation, as we do for the continuous Burgers
equation.

2. Discrete Burgers equation and its ultradiscretization

First, we derive a discrete Burgers equation by using a discrete Cole–Hopf transformation.
The continuous Burgers equation is

vt = 2vvx + vxx. (3)

It is well known that this equation can be linearized through the Cole–Hopf transformation
given by

v = fx

f
(4)

into the diffusion equation

ft = fxx. (5)

To discretize equation (3), we utilize discrete analogues to equations (4) and (5) [12].
Discretizing both time and space variables in equation (5), a discrete diffusion equation

f t+1
j − f tj
1t

= f tj+1− 2f tj + f tj−1

(1x)2
(6)
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is obtained where1t and1x are lattice intervals int andx respectively. Next we define
a discrete analogue to the Cole–Hopf transformation

utj ≡ c
f tj+1

f tj
(7)

wherec is a constant. Rewriting equation (6) withutj in place off tj we obtain

ut+1
j = utj−1

1+ 1−2δ
cδ
utj + 1

c2u
t
ju
t
j+1

1+ 1−2δ
cδ
utj−1+ 1

c2u
t
j−1u

t
j

(8)

whereδ = 1t/(1x)2. Assumingv(j1x, t1t) = 1
1x

log
utj
c

and taking the limits1x → 0
and1t → 0, we obtain equation (3) from equation (8). Therefore, we consider equation (8)
to be a discrete analogue of the Burgers equation (3) and call equation (8) a ‘discrete Burgers
equation’.

Next, we ‘ultradiscretize’ equation (8), that is, discretize a dependent variableu using
equation (1). Let us introduce a transformation of variables and parameters as follows

utj = eU
t
j /ε (9)

1− 2δ

cδ
= e−M/ε (10)

c2 = eL/ε. (11)

Then, equation (8) reduces to

Ut+1
j = Ut

j−1+ ε log

(
1+ exp

(
Ut
j −M
ε

)
+ exp

(
Ut
j + Ut

j+1− L
ε

))

−ε log

(
1+ exp

(
Ut
j−1−M
ε

)
+ exp

(
Ut
j−1+ Ut

j − L
ε

))
. (12)

Taking a limit ε→+0 and using the relation (1), we obtain

Ut+1
j = Ut

j−1+max(0, U t
j −M,Ut

j + Ut
j+1− L)−max(0, U t

j−1−M,Ut
j−1+ Ut

j − L).
(13)

Using identities

max(A,B, . . .) = −min(−A,−B, . . .) (14)

min(A,B, . . .)+X = min(A+X,B +X, . . .) (15)

the above equation becomes

Ut+1
j = Ut

j +min(M,Ut
j−1, L− Ut

j )−min(M,Ut
j , L− Ut

j+1). (16)

If initial U and parametersM andL are all integer, thenU for any t and j is always an
integer. Thus, we obtain an equation with all discrete variables by the ultradiscrete limit (1).
We call equation (16) the ‘ultradiscrete Burgers equation’.

Under an appropriate condition, equation (16) becomes a CA. Assume thatM > 0,
L > 0 and 06 Ut

j 6 L for any j at a certaint . Then, relations

min(M,Ut
j−1, L− Ut

j ) > 0

min(M,Ut
j , L− Ut

j+1) > 0

min(M,Ut
j−1, L− Ut

j )+ Ut
j = min(M + Ut

j , U
t
j−1+ Ut

j , L) 6 L
min(M,Ut

j , L− Ut
j+1)− Ut

j = min(M − Ut
j , 0, L− Ut

j+1− Ut
j ) 6 0

(17)
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hold. Therefore, 06 Ut+1
j 6 L holds for anyj . This means equation (16) under the above

condition is equivalent to a CA with a value set{0, 1, . . . , L}. We call this BCA.
Moreover, introducing a transformation

f tj = exp(F tj /ε) (18)

an ultradiscrete Cole–Hopf transformation

Ut
j = F tj+1− F tj +

L

2
(19)

is obtained from equation (7) under the limitε → +0. Then, we obtain an ultradiscrete
diffusion equation;

F t+1
j = max

(
F tj−1, F

t
j +

L

2
−M,F tj+1

)
(20)

from equation (16). This equation can also be obtained from equation (6) with equation (18)
underε→+0.

3. Relation to rule-184 CA and shock wave solutions of BCA

In this section, we put a restriction,L 6 M, on BCA for simplicity. Then, equation (16)
reduces to

Ut+1
j = Ut

j +min(Ut
j−1, L− Ut

j )−min(Ut
j , L− Ut

j+1) (21)

because anyUt
j satisfies 06 Ut

j 6 L and is equal to or smaller thanM.
Next, let us consider the caseL = 1 for equation (21). The evolution rule for

equation (21) is expressed symbolically by

Ut
j−1U

t
j U

t
j+1

Ut+1
j

= 000

0
,

001

0
,

010

0
,

011

1
,

100

1
,

101

1
,

110

0
,

111

1
. (22)

This rule is equivalent to that of rule-184 CA given by the following Boolean expression

Ut+1
j = (Ut

j−1 ∧ Ut
j ) ∨ (Ut

j ∧ Ut
j+1) (23)

where∧, ∨ and denote AND, OR and NOT in Boolean operation respectively [1].
Therefore, we can conclude that BCA includes rule-184 CA as a special case. Note that
various expressions using max and min functions can include the rule-184 CA. For example,
by replacingx ∧ y, x ∨ y and x with min(x, y), max(x, y) and 1− x respectively in
equation (23), we obtain

Ut+1
j = max(min(Ut

j−1, 1− Ut
j ),min(Ut

j , U
t
j+1)) (24)

which is equivalent to rule-184 CA ifU is restricted to 0 or 1. However, equations (21)
and (24) are not equivalent ifU can take an arbitrary integer value.

Then we derive solutions to equation (21) from shock wave solutions to the discrete
Burgers equation (8). Let us assume thatf tj has the following form;

f tj = 1+ exp(kj + ωt + ξ0) (25)

wherek, ω andξ0 are constants. Substituting equation (25) into equation (6), we obtain a
dispersion relation

ω = log(1+ δ(ek − 2+ e−k). (26)
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width 1

j

U

L/2

L/2+ K

speed −1

(a)

(b)

width 1

j

U

L/2

L/2+ K
speed +1

Figure 1. Shock wave solution. (a) K > 0, (b) K < 0.

Thus we obtain a solution

utj = c
f tj+1

f tj
= c1+ exp(k(j + 1)+ ωt + ξ0)

1+ exp(kj + ωt + ξ0)
. (27)

This is a shock wave solution to the discrete Burgers equation (8). From this solution, we
obtain a shock wave solution to the ultradiscrete Burgers equation (21) using the ultradiscrete
limit. Assuming

k = K

ε
ω = �

ε
ξ0 = 40

ε
(28)

and recalling equations (9) and (11), we obtain

Ut
j =

L

2
+max(0,K(j + 1)+�t +40)−max(0,Kj +�t +40). (29)

From equation (26) and the conditionL 6 M, a dispersion relation

� = |K| (30)

is obtained. IfK > 0, limj→−∞ Ut
j = L

2 and limj→+∞ Ut
j = L

2 + K. If K < 0,

limj→−∞ Ut
j = L

2 +K and limj→+∞ Ut
j = L

2 . We can easily see that the above solution is
a propagating wave with a speed−1 (K > 0) or+1 (K < 0) and its shape is like a step as
shown in figure 1. Since anyUt

j must be an integer value from 0 toL, it is necessary for
the above solution thatL is an even positive integer,|K| 6 L/2 and40 is an integer.

4. Asymptotic behavior of BCA

It is known that, in the case of the rule-184 CA (22) with a periodic boundary condition,Ut
j

at large enought becomes a steady solution [7–9]. There are two types of such solutions,
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one isUt+1
j = Ut

j−1 and the other isUt+1
j = Ut

j+1. Which type is selected depends on the
total number of 1’s. To date such behaviour has been mainly derived by pattern analysis
on 1–0 sequences. In this paper, since we obtain the relation between rule-184 CA and
the ultradiscrete Burgers equation reducible to the ultradiscrete diffusion equation, we can
derive the asymptotic behaviour from analytic properties of the equations. Moreover, we
can show the BCA as an extension of the rule-184 CA has similar properties to those
described above.

First let us assume the space site of equation (16) is periodic with periodK, that is,
Ut
j = Ut

j+K . Then, we can easily see that
∑K

i=1U
t
i is constant fort . Therefore, definingρ

by

ρ = 1

KL

K∑
i=1

Ut
i (31)

ρ is constant. If we set the initial valueU0
j at an initial timet = 0, we can constructF 0

j

from an inverse relation of equation (19),

F 0
j =



j−1∑
i=0

(
U0
i −

L

2

)
if j > 1

U0
0 −

L

2
−

j∑
i=0

(
U0
i −

L

2

)
otherwise.

(32)

Note thatF 0
j has a freedom of constant and we setF 0

0 = 0 in the above equation. Moreover,
F 0
j is not periodic and

F 0
j+K − F 0

j =
j+K−1∑
i=j

(
U0
i −

L

2

)
= KL(ρ − 1

2). (33)

Then, we can calculateF tj for t > 0 using equation (20) and obtainUt
j by equation (19).

This Ut
j also satisfies equation (16) with the above initial valueU0

j . That is, we can grasp
the dynamics of BCA by equation (20) in place of equation (16).

Next we show the asymptotic behaviour ofUt
j at large enought . We can assumeK is

even without loss of generality because we can consider the period is 2K if K is odd.

Case 1. L2 6 M. From equation (20), we obtain

F tj = max(max(F 0
j−t , F

0
j−t+2, . . . , F

0
j+t ),max(F 0

j−t+1, F
0
j−t+3, . . . , F

0
j+t−1)+ α) (34)

whereα = L
2 −M.

Case 1.1.ρ < 1
2. In this case,F 0

j+K < F 0
j holds from equation (33). Then

F tj = max(max(F 0
j−t , F

0
j−t+2, . . .),max(F 0

j−t+1, F
0
j−t+3, . . .)+ α) (35)

is derived fort > K
2 . Therefore,

F t+1
j = F tj−1 and Ut+1

j = Ut
j−1 (36)

are obtained. Figure 2(a) shows an example of evolution.
By substituting equation (36) into equation (20), we obtain

0= max(0, F tj − F tj−1+ α, F tj+1− F tj−1) = max(0, U t
j−1−M,Ut

j−1+ Ut
j − L). (37)
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(a) (b)

(c)

Figure 2. Time evolution from the random initial state forL = 3, M = 2 andK = 30. The
black, dark grey, light grey and white squares denote sites with values 3, 2, 1, 0, respectively.
(a) ρ = 0.4, (b) ρ = 0.5 and (c) ρ = 0.6.

From this condition,

Ut
j 6 M and Ut

j 6 L− Ut
j+1 (38)

hold for anyj . In the case of rule-184 CA (L = 1,M > 1), the above condition means the
sequenceUt

1U
t
2 . . . U

t
K contains only 00, 01, 10 and not 11.

Case 1.2.ρ = 1
2. SinceF 0

j+K = F 0
j ,

F tj =
{

max(max(F 0
2 , F

0
4 , . . . , F

0
K),max(F 0

1 , F
0
3 , . . . , F

0
K−1)+ α) if j − t is even

max(max(F 0
1 , F

0
3 , . . . , F

0
K−1),max(F 0

2 , F
0
4 , . . . , F

0
K)+ α) otherwise

(39)
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is derived fort > K
2 . Therefore, we obtainF t+1

j = F tj±1 andUt+1
j = Ut

j±1. Figure 2(b)

shows an example of evolution. SubstitutingF t+1
j = F tj±1 into equation (20), we find

Ut
j 6 M L− Ut

j+1 6 M and Ut
j = L− Ut

j+1 (40)

for anyj . In the case of rule-184 CA, the above condition means the sequenceUt
1U

t
2 . . . U

t
K

is 0101. . .01 or 1010. . .10.

Case 1.3.ρ > 1
2. By using a similar discussion to case 1.1, we obtain

F t+1
j = F tj+1 and Ut+1

j = Ut
j+1 (41)

and

L− Ut
j+1 6 Ut

j and L− Ut
j 6 M (42)

for t > K
2 . Figure 2(c) shows an example of evolution. In the case of rule-184 CA, the

above condition means the sequenceUt
1U

t
2 . . . U

t
K contains only 01, 10, 11 and not 00.

Case 2. L2 > M. From equation (20), we obtain

F tj = max(F 0
j−t , F

0
j−t+1+ α, . . . , F 0

j + tα, . . . , F 0
j+t−1+ α, F 0

j+t ). (43)

Case 2.1.ρ < M
L

. In this case,F tj+K +Kα < F tj holds. Therefore,

F tj = max(F 0
j−t , F

0
j−t+1+ α, . . . , F 0

j−t+K−1+ (K − 1)α) (44)

is derived fort > K. Then, we obtain

F t+1
j = F tj−1 and Ut+1

j = Ut
j−1 (45)

and

Ut
j 6 M and Ut

j 6 L− Ut
j+1. (46)

Figure 3(a) shows an example of evolution.

Case 2.2.M
L
6 ρ 6 1− M

L
. In this case, since|F tj+K − F tj | = KL|ρ − 1

2| 6 Kα, we can
derive

F tj±K 6 F tj +Kα. (47)

Therefore, we obtain

F tj = max(F 0
j−K+1, F

0
j−K+2+ α, . . . , F 0

j + (K − 1)α, . . . ,

F 0
j+K−2+ α, F 0

j+K−1)+ (t −K + 1)α (48)

from equation (43) fort > K. Using this relation,

F t+1
j = F tj + α and Ut+1

j = Ut
j (49)

and

M 6 Ut
j 6 L−M (50)

hold for t > K. Figure 3(b) shows an example of evolution.
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Case 2.3.ρ > 1− M
L

. By using a similar discussion to case 2.1,

F t+1
j = F tj+1 and Ut+1

j = Ut
j+1 (51)

and

L− Ut
j+1 6 Ut

j and L− Ut
j 6 M (52)

hold for t > K. Figure 3(c) shows an example of evolution.

5. Particle model expressed by BCA

In rule-184 CA (22), the number of 1’s is conserved for time and the evolution rule is
interpreted as the following motion of particles [9].

(a) (b)

(c)

Figure 3. Time evolution from the random initial state forL = 3, M = 1 andK = 30. Black,
dark grey, light grey and white squares denote sites with values 3, 2, 1, 0, respectively. (a)
ρ = 0.3, (b) ρ = 0.4 and (c) ρ = 0.7.
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• Each site can hold one particle at the most.Ut
j denotes the number of particles at site

j and timet . From t to t + 1, particles move to their right site if the site is empty att and
do not move otherwise.

BCA (16) including rule-184 CA as a special case can express the following particle
model.
• Each site can holdL particles at most.Ut

j denotes the number of particles at site
j and timet . From t to t + 1, particles at sitej can move to sitej + 1. The maximum
number of movable particles isM. Under this restriction, they move to the vacant space at
site j + 1 as many as they can.

According to the above rule, the number of moveable particles at sitej and timet is
min(M,Ut

j , L− Ut
j+1). Therefore,Ut+1

j is calculated by equation (16). We can easily see
from the above rule that the total number of particles is conserved.

Next let us consider a mean flux of particles [11]. Ifqt denotes the mean flux, it is
defined by

qt = 1

KL

K∑
i=1

min(M,Ut
i , L− Ut

i+1). (53)

From the results of the previous section, we can show thatqt becomes constant at large
enought and the constant value depends only on the particle densityρ and not on the initial
distribution of particles. For example, in case 1.1 (L

2 6 M, ρ < 1
2), we find

qt = 1

KL

K∑
i=1

Ut
i = ρ

(
t > K

2

)
(54)

since min(M,Ut
j , L−Ut

j+1) = Ut
j from equation (38). By using similar discussions, in the

case ofL2 6 M,

qt =
{
ρ if ρ 6 1

2

1− ρ otherwise

(
t > K

2

)
(55)

and in the case ofL2 > M,

qt =


ρ if ρ <

M

L
M

L
if
M

L
6 ρ 6 1− M

L

1− ρ otherwise

(t > K). (56)

In particular, we can show thatqt increases monotonically ont in the case ofL2 6 M.

Using equation (16),
∑K

i=1U
t
i = constant andL2 6 M, we obtain

qt+1− qt = 1

KL

K∑
i=1

{min(M,Ut+1
i , L− Ut+1

i+1 )−min(M,Ut
i , L− Ut

i+1)}

= 1

KL

K∑
i=1

max(0, g(Ut
i , U

t
i+1, U

t
i+2, U

t
i+3)) > 0 (57)

where

g(a0, a1, a2, a3) = min(2L,L+M + a3, L+ a2+ a3,

M + a1+ a2+ a3, a0+ a1+ a2+ a3)

−min(L+M + a1, L+ a0+ a1, 2M + a1+ a3,M + a0+ a1+ a3).
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Figure 4. Monotonical increase ofqt . The same data as in figure 2(c) are used.

Figure 4 shows an evolution ofqt obtained from the same data as in figure 2(c). Since
qt is a finite value,qt becomes constant att � 0. Theng(Ut

j , U
t
j+1, U

t
j+2, U

t
j+3) = 0 is

obtained for anyj and we can derive the same results as in the previous section concerning
the asymptotic behaviour.

6. Concluding discussions

In this paper, the main results are as follows.
(i) The relation between the Burgers equation and rule-184 CA is clarified via discrete

and ultradiscrete Burgers equations. Under specific conditions, ultradiscrete Burgers
equation can be BCA including rule-184 CA.

(ii) Shock wave solutions exist in BCA which is derived from discrete shock wave
solutions under an ultradiscrete limit.

(iii) Any solution to BCA with periodic boundary conditions becomes steady at large
enough time. The sequence ofUt

j converges to a stable pattern shifting to the right or left,
or to a static pattern. Onlyρ decides which pattern is selected.

(iv) BCA expresses an evolutional system of moving particles. The mean flux of
particles becomes constant at large enough time. The constant value depends only on the
density of particles. In the specific case, the mean flux increases monotonically on time.

In the above results, the linear diffusion equation obtained using the Cole–Hopf trans-
formation plays an important role. In the discrete Burgers equation, shock wave solutions
and asymptotic behaviour can be grasped through the diffusion equation. In the BCA, cor-
responding results are obtained by parallel discussions. We can consider such a relation
between the discrete equation and CA can introduce a new viewpoint to discrete analysis.

On the other hand, BCA and rule-184 CA are easy to analyse since they are related
to the discrete Burgers equation which can be analysed exactly. CA exist in the form of
equation (2) of which solutions show chaotic behaviour. If we discuss such types of CA,
it may be difficult to show what structure of CA is preserved in the corresponding discrete
equation. This problem is left for future discussion.
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